A Cognitive Model for Aggregating People's Rankings
نویسندگان
چکیده
We develop a cognitive modeling approach, motivated by classic theories of knowledge representation and judgment from psychology, for combining people's rankings of items. The model makes simple assumptions about how individual differences in knowledge lead to observed ranking data in behavioral tasks. We implement the cognitive model as a Bayesian graphical model, and use computational sampling to infer an aggregate ranking and measures of the individual expertise. Applications of the model to 23 data sets, dealing with general knowledge and prediction tasks, show that the model performs well in producing an aggregate ranking that is often close to the ground truth and, as in the "wisdom of the crowd" effect, usually performs better than most of individuals. We also present some evidence that the model outperforms the traditional statistical Borda count method, and that the model is able to infer people's relative expertise surprisingly well without knowing the ground truth. We discuss the advantages of the cognitive modeling approach to combining ranking data, and in wisdom of the crowd research generally, as well as highlighting a number of potential directions for future model development.
منابع مشابه
An Analysis of Rank Aggregation Algorithms
Rank aggregation is an essential approach for aggregating the preferences of multiple agents. One rank aggregation rule of particular interest is the Kemeny rule, which maximises the number of pairwise agreements between the final ranking and the existing rankings, and has an important interpretation as a maximum likelihood estimator. However, Kemeny rankings are NP-hard to compute. This has re...
متن کاملStructure Discovery from Partial Rankings
Aggregating and statistical reasoning with ranked data are tasks that arise in a number of applications from analyzing political elections to modeling user preferences over a set of items. Representing distributions over rankings, however, can be daunting due to the fact that the number of rankings of n items scales factorially. Moreover, it is crucial for probabilistic models over rankings to ...
متن کاملNon-parametric Modeling of Partially Ranked Data
Statistical models on full and partial rankings of n items are often of limited practical use for large n due to computational consideration. We explore the use of non-parametric models for partially ranked data and derive efficient procedures for their use for large n. The derivations are largely possible through combinatorial and algebraic manipulations based on the lattice of partial ranking...
متن کاملThe Alliance Hypothesis for Human Friendship
BACKGROUND Exploration of the cognitive systems underlying human friendship will be advanced by identifying the evolved functions these systems perform. Here we propose that human friendship is caused, in part, by cognitive mechanisms designed to assemble support groups for potential conflicts. We use game theory to identify computations about friends that can increase performance in multi-agen...
متن کاملInferring Expertise in Knowledge and Prediction Ranking Tasks
We apply a cognitive modeling approach to the problem of measuring expertise on rank ordering problems. In these problems, people must order a set of items in terms of a given criterion (e.g., ordering American holidays through the calendar year). Using a cognitive model of behavior on this problem that allows for individual differences in knowledge, we are able to infer people's expertise dire...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014